(全 問 必 答)

第1	問	次の各問い(問	1~3)に答え	よ。〔 解答	番号 1 ~	5]) (配点	20)
問 1	逃~	てのa~cに当て 、。	こはまるものを	・, それぞれ	ιの解答群①〜	· ④ のう	ちから	ラーつ	ずつ
	a	混合物である糸	組合せ。 1						
	1	氷水と水銀		2	ボーキサイト	と石油			
	3	エタノールと均	温酸	4	ドライアイス	、と粘土			
	b	中性子の数が同	同じであるもの)の組合せ。	2				
	1	$^2\mathrm{H}$ $^4\mathrm{He}$	② ¹¹ B ≥ ¹⁶ C	3	$^{24}{ m Mg}$ \succeq $^{27}{ m Al}$	4	³¹ Pと	32 S	
	c	固体が分子結晶	晶として存在し	ているもの	D ₀ 3				
	1	二酸化炭素	② 塩化カリ	リウム ③	二酸化ケイ素	4	亜 釒	八口	

問2 図 1 は周期表の一部である。一つの区分はそれぞれ一つの元素をあらわし、例として \mathbf{P} は 1 族第 1 周期の \mathbf{H} である。この図に関する記述として最も適当なものを、下の①~④のうちから一つ選べ。 4

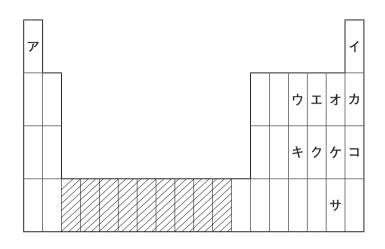
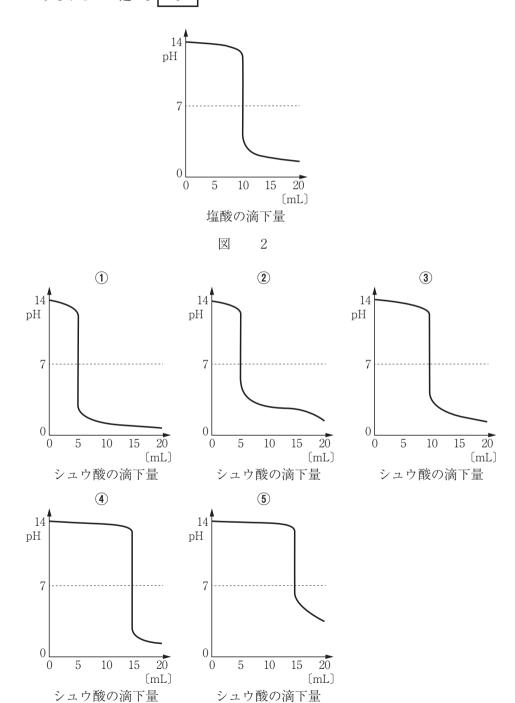
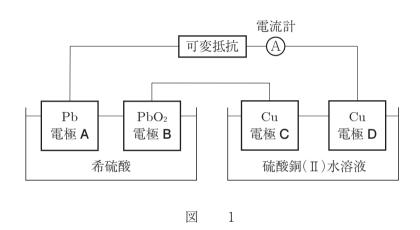



図 1


- ① **イ**. **カ**. **コ**の単体のうち、最も沸点が低いのは**コ**である。
- ② ウ. エ. サの単体は、いずれも常温、常圧で気体である。
- ③ ウ.ク.ケの原子の水素化合物の水溶液は、いずれも酸性を示す。
- **4** ア〜サの原子のうち、電気陰性度が最も大きいのはオである。

問3 図2は0.050mol/Lの水酸化ナトリウム水溶液10mLを0.050mol/Lの塩酸で中和したときの中和滴定曲線である。塩酸の代わりに0.050mol/Lのシュウ酸を用いて中和をおこなった場合の中和滴定曲線として最も適当なものを、下の①~⑤のうちから一つ選べ。 5

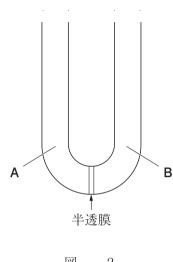
第2問 次の各問い(**問1** ~ **5**) に答えよ。〔**解答番号 1 ~ 6**] (配点 25)

問1 図 1 は、鉛蓄電池を用いて硫酸銅(Ⅱ)水溶液を電気分解する装置を示したも のである。これを用いて、1.93Aの電流で t 秒間電気分解をおこなったところ、 電極Dに銅が1.27g析出した。これに関する下の問い $(a \cdot b)$ に答えよ。ただし、 原子量はO = 16, S = 32, Cu = 63.5, Pb = 207, ファラデー定数は 9.65×10^4 C/ molであるとする。

- a この電気分解における. 鉛蓄電池の負極の質量変化の値として最も適当な 数値を、次の①~⑤のうちから一つ選べ。 1
- ① 1.28g減少
- ② 1.92g減少
- (3) 増減なし

- 4 1.28g增加
- ⑤ 1.92g 增加
- **b** 電気分解をおこなった時間 t 秒の値として最も適当な数値を、次の①~⑤ のうちから一つ選べ。 2 秒
- (1) 100 (2) 200
- **3** 500
- **(4)** 1000
- **(5)** 2000

問2 理想気体では圧力P[Pa],体積V[L],気体の物質量n[mol],絶対温度T[K] について次の式が成り立っている。


$$\frac{PV}{nRT} = 1$$
 (R; 気体定数) · · · (i)

しかし、実在気体では(i)式が必ずしも成立しないことがわかっている。 理想気体と実在気体に関する次の記述 $\mathbf{P}\sim\mathbf{p}$ の正誤の組合せとして正しいもの を、下の $\mathbf{1}\sim\mathbf{8}$ のうちから一つ選べ。 3

- ア 理想気体は、分子自身の占める体積が 0 で、また、分子間力が存在しない と仮定した気体である。
- **イ** 実在気体のうちでも、分子量が小さい無極性分子からなる気体は(i)式からのずれが小さい。
- ウ 実在気体でも、低温・高圧の条件になるほど、(i)式からのずれが小さくなる。

	ア	1	ウ
1	正	正	正
2	正	正	誤
3	正	誤	正
4	正	誤	誤
(5)	誤	正	正
6	誤	正	誤
7	誤	誤	正
8	誤	誤	誤

問3 図2に示すU字管のA、Bの部分にそれぞれ同体積の水溶液を入れ、両液を半透膜を隔てて接触させ浸透現象を観察した。これに関する記述として最も適当なものを、下の①~④のうちから一つ選べ。ただし、電解質はいずれも完全に電離しているものとする。 4

- 図 2
- Aに0.10mol/Lの尿素水溶液,Bに0.10mol/Lの塩化ナトリウム水溶液を入れ放置すると、AからBの方に水が移動し、Bの液面が上昇した。
- ② A = 0.10 mol/Lのグルコース水溶液,B = 0.10 mol/Lの塩化ナトリウム水溶液を入れ放置したが、何の変化も見られなかった。
- ③ Aに0.10mol/Lの塩化カルシウム水溶液, Bに0.10mol/Lの硫酸ナトリウム 水溶液を入れ放置するとBからAの方に水が移動し, Aの液面が上昇した。
- ④ Aに0.10mol/Lの尿素水溶液, Bに0.15mol/Lのグルコース水溶液を入れ放置すると、BからAの方に水が移動し、Aの液面が上昇した。
- **問 4** 気体の水 1 mol中の共有結合を切断して、水素原子および酸素原子に分けるには926kJのエネルギーを要する。 H−HおよびO=Oの結合エネルギーをそれぞれ436kJ/mol、498kJ/molとすると、気体の水の生成熱は何kJ/molか。最も適当な数値を、次の①~④のうちから一つ選べ。 **5** kJ/mol
 - ① 241 ② 482 ③ 459 ④ 525

問5 次の記述中の空欄 **ア** ・ **イ** に当てはまる語句の組合せとして最も適当なものを、下の①~⑥のうちから一つ選べ。 **6**

四酸化二窒素 N_2O_4 から二酸化窒素 NO_2 が生成する反応は吸熱反応であり、次の熱化学方程式で表される。

$$N_2O_4({\rm sl}) = 2NO_2({\rm sl}) - 57.2 \text{ kJ}$$

	ア	1
1	正反応のみ大きくなり	濃くなっていく
2	正反応のみ大きくなり	薄くなっていく
3	逆反応のみ大きくなり	濃くなっていく
4	逆反応のみ大きくなり	薄くなっていく
5	正・逆反応ともに大きくなり	濃くなっていく
6	正・逆反応ともに大きくなり	薄くなっていく

第3問 次の各問い(問1~7)に答えよ。[解答番号 1	~	7)	(配点	25)
---------------------------------------	--------	---	---	---	-----	-----

- **問1** 酸化物の反応に関する記述として**誤りを含むもの**を、次の①~④のうちから一つ選べ。 1
 - ① CaOは水と反応して強い塩基性の水溶液となる。
 - ② Al₂O₃は酸の水溶液にはよく溶けるが、塩基の水溶液には溶けにくい。
 - ③ CO。は水酸化ナトリウムと反応する。
 - ④ SO, は水と反応して酸性の水溶液となる。
- **問2** 硝酸は工業的には次のような一連の反応によってつくられる。

$$4NH_3 + 5O_2 \longrightarrow 4NO + 6H_2O \qquad \cdot \cdot \cdot (i)$$

$$2NO + O_2 \longrightarrow 2NO_2 \qquad \cdot \cdot \cdot (ii)$$

$$3NO_2 + H_2O \longrightarrow 2HNO_3 + NO \qquad \cdot \cdot \cdot (iii)$$

これらの反応に関する記述として**誤りを含むもの**を,次の①~④のうちから一つ選べ。 2

- ① (i)式の反応には触媒として自金が用いられる。
- ② (ii)式の反応には加熱が必要である。
- ③ (iii)式で得られたNOは再び(ii)式の反応に用いられる。
- ④ (i) \sim (ii) 式より、理論上 1 mol m

問3 次の表①~④のア欄には実験室で得られる気体の物質名、イ欄にはその気体を 発生させるための試薬、ウ欄にはその気体の性質や捕集方法などが示されている。 ア、イ、ウの組合せとして誤りを含むものを一つ選べ。 3

	ア	1	ウ
1	O_2	$\mathrm{KClO_3}$, $\mathrm{MnO_2}$	多くの元素と反応して酸化物をつくる
2	NH_3	$\mathrm{NH_4Cl},\ \mathrm{Ca(OH)_2}$	発生させるためには加熱が必要である
3	HCl	NaCl, H_2SO_4	水上置換で捕集する
4	Cl_2	MnO_{2} , HCl	黄緑色の気体で酸化力がある

問4 2 族元素のMgとCaに関する記述としてMgにのみ当てはまるものを、次の① ~④のうちから一つ選べ。 **4**

- ① 単体は冷水と激しく反応する。
- (2) イオンを含む水溶液が炎色反応を示す。
- ③ 塩化物は水に溶けやすい。
- 4 硫酸塩は水に溶けやすい。

問5 亜鉛に関する記述として**誤りを含むもの**を、次の①~④のうちから一つ選べ。 **5**

- ① 12族に属する遷移元素で、2価の陽イオンになりやすい。
- ② 酸、強塩基の水溶液と反応して水素を発生する。
- ③ 酸化物は白色顔料や医薬品などに用いられる。
- (4) マンガン乾電池の負極として用いられる。

問6 次の記述中の空欄 **ア** ・ **イ** に当てはまる試薬の組合せとして最も適当なものを、下の①~⑥のうちから一つ選べ。 **6**

よくみがいた鉄くぎを希硫酸に浸したところ、その一部が溶けた。この溶液を 二つの試験管に分け、一方に ア 水溶液を十分に加えたところ、緑白色の沈 殿が生じた。もう一方に イ 水溶液を少量加えたところ、濃青色の沈殿が生 じた。

	ア	1
1	HCl	$\mathrm{K}_{4}\left[\mathrm{Fe}\left(\mathrm{CN} ight)_{6} ight]$
2	HCl	$\mathrm{K_{3}}\left[\mathrm{Fe}\left(\mathrm{CN}\right)_{6} ight]$
3	$\mathrm{H_{2}S}$	$\mathrm{K_4}\left[\mathrm{Fe}(\mathrm{CN})_6 ight]$
4	$\mathrm{H_{2}S}$	$\mathrm{K_3}\left[\mathrm{Fe}\left(\mathrm{CN}\right)_6 ight]$
(5)	NaOH	$\mathrm{K_4}\left[\mathrm{Fe}(\mathrm{CN})_6 ight]$
6	NaOH	$\mathrm{K_3}\left[\mathrm{Fe}\left(\mathrm{CN}\right)_6 ight]$

問7 2種類の金属イオンA、Bを含む水溶液に試薬Cを過剰に加えたところ、金属イオンBのみを含む沈殿が生じた。このA、B、Cの組合せとして、最も適当なものを次の①~④のうちから一つ選べ。 $\boxed{7}$

	Α	В	С
1	Zn^{2^+}	$\mathrm{Ag}^{^{+}}$	アンモニア水
2	Zn^{2^+}	Al^{3+}	水酸化ナトリウム水溶液
3	Cu^{2^+}	Al^{3+}	アンモニア水
4	$\mathrm{Ag}^{^{+}}$	Cu^{2^+}	水酸化ナトリウム水溶液

構成なも	受素、水素、酸素からなる有機化合物 A は、分子量 60 以下で、水に溶けやす 成元素の質量比は C: H: O = 9: 2: 4 である。 A の示性式として最も返 のを、次の①~⑤のうちから一つ選べ。ただし、原子量は H = 1.0、C = 1 16 とする。 1	当
1	CH_3-CH_2-OH ② CH_3-O-CH_3	
3	$CH_3-CH_2-CH_2-OH$	
(5)	$\mathrm{CH_3-CO-CH_3}$	
	ベ素原子の 1 個を臭素原子で置き換えたときに,4 種類の構造異性体が表れるものを,次の①~④のうちから一つ選べ。 2	会え
(1)	トルエン ② p-キシレン	
	エチルベンゼン ④ ナフタレン	
	てに示す有機化合物ア〜オに関する記述として最も適当なものを,下の①〜 うちから一つ選べ。 3	4
ア	НСООН	
1		
1	$\mathrm{CH_{3}CHO}$	
ウ		
ウ エ	$\mathrm{CH_{3}CH_{2}OH}$	
ウ エ オ	$\label{eq:ch3} \begin{split} \mathrm{CH_3CH_2OH} \\ \mathrm{CH_3CH(OH)CH_3} \\ \mathrm{CH_3COCH_3} \end{split}$	
ウ エ オ ①	$\mathrm{CH_3CH_2OH}$ $\mathrm{CH_3CH(OH)CH_3}$ $\mathrm{CH_3COCH_3}$	
ウ エ オ ① ②	CH ₃ CH ₂ OH CH ₃ CH(OH)CH ₃ CH ₃ COCH ₃ ヨードホルム反応を示すのは化合物 イ , エ , オ のみである。	`物
ウ エ オ ① ② ③	CH ₃ CH ₂ OH CH ₃ CH(OH)CH ₃ CH ₃ COCH ₃ ヨードホルム反応を示すのは化合物イ、エ、オのみである。 銀鏡反応を示す化合物は イ のみである。	?物
ウ エ オ ① ② ③ ウ	$\mathrm{CH_3CH_2OH}$ $\mathrm{CH_3CH(OH)CH_3}$ $\mathrm{CH_3COCH_3}$ $ = - \mathbb{F}$ F	

第4問 次の各問い(**問1** ~ **8**)に答えよ。〔**解答番号 1** ~ **8** 〕 (配点 30)

- **問4** 油脂に関する記述として**誤りを含むもの**を、次の①~④のうちから一つ選べ。 4
 - ① 一定質量の油脂のけん化に必要な水酸化ナトリウムの物質量が多いほど、油脂の分子量は大きい。
 - ② 常温で液体である油脂は、同じ炭素数で固体である油脂と比べて、分子内に 不飽和結合を多くもつ。
 - ③ 一定質量の油脂に付加するヨウ素の物質量が多いほど、油脂の分子中の不飽 和結合の数は多い。
 - ④ 油脂を構成する高級脂肪酸の一つであるステアリン酸 $C_{18}H_{36}O_2$ 分子は、炭素原子間の二重結合をもたない。
- 問5 ベンゼンを出発物質として次のア〜ウの操作を行った。各操作によって得られる芳香族化合物 A, B, Cの名称の組合せとして最も適当なものを,下の①〜⑥のうちから一つ選べ。 5
 - \mathbf{P} ベンゼンに濃硫酸と濃硝酸の混合物を加えて、約60 \mathbb{C} で反応させ \mathbf{A} を得た。
 - **イ A**にスズと塩酸を加え、均一な溶液となるまでおだやかに加熱し、室温まで 冷却したのち水酸化ナトリウム水溶液を加えて**B**を得た。
 - ウBに無水酢酸を作用させてCを得た。

	Α	В	С
1	ベンゼンスルホン酸	塩化ベンゼンジアゾニウム	フェノール
2	ベンゼンスルホン酸	アニリン	アセトアニリド
3	ベンゼンスルホン酸	フェノール	酢酸フェニル
4	ニトロベンゼン	塩化ベンゼンジアゾニウム	フェノール
(5)	ニトロベンゼン	アニリン	アセトアニリド
6	ニトロベンゼン	フェノール	酢酸フェニル

問 6						セチルサリチ の①~⑥のう)両方に当てはまる っ一つ選べ。 6
	ア イ ウ	炭酸水素	ナトリウ	二置換体で ム水溶液を により呈色	加えると	気体を発生す	-る。	
	1	アのみ		2	イ のみ		3	ウ のみ
	4	アとイ		(5)	アとウ		6	イとウ
問 7	① ?? ① 2 ③	ちから一 デンプン フェーリ ヨウ素デ	つ選べ。 に酵素ア ングルプン	7 ミラーゼを 還元する。 応を示す。	作用させ	として 誤りを ると得られる ルコース 2 分	0 0	うの を,次の①~④
問 8	なも	,のを, 下	Ø1~6	のうちから	 ,一つ選べ	。 8		せとして最も適当 条件で反応させる
	ر ک							化合物が得られる。
	ر 20			多数の				
				ア	7	1]
			1	付加	重合	エステル	結合	
			2	付加重	重合	エーテル	結合	
			3	付加重	重合	アミド結	合	
			4	縮合	重合	エステル	結合	

エーテル結合

アミド結合

縮合重合

縮合重合

56