
(全 問 必 答)

第1間 次の文章を読み、各問い(問1~6)に答えよ。

[**解答番号 1** ~ **6**] (配点 30)

図1, 2のように、質量の無視できる薄い三角形状の板 ABC がある。板 ABC は直角三角形をなしていて、3辺の長さはそれぞれ AB=4[m], BC=5[m], CA=3[m]である。板 ABC を鉛直面内(紙面内)におき、点 A をピンで壁に固定し、板 ABC を点 A のまわりに鉛直面内で摩擦なく回転できるようにする。辺 BC 上の点 D から辺 AB上に下ろした垂線と辺 ABとの交点を Eとし、AE=x[m](1[m] $\leq x$ ≤ 3 [m])とする。点 B に軽い糸で質量 M[kg]のおもりをつるし、点 D に、図 1 あるいは図 2 のように、大きさ F_1 [N]あるいは F_2 [N]の力を加えると、板 ABC は辺 ABを水平方向に(辺 CAを鉛直方向に)保ったまま静止した。また、重力加速度の大きさを g[m/ s^2]とする。

- **問1** 図1のように、点Dに紙面内で鉛直上向きの大きさ F_1 [N]の力を加えると、 板 ABC は辺 AB を水平方向に保ったまま静止した。このとき F_1 はいくらか。 正しいものを、次の①~④のうちから一つ選べ。 $F_1 = \boxed{1}$ [N]

- ① $\frac{1}{x}Mg$ ② $\frac{2}{x}Mg$ ③ $\frac{3}{x}Mg$ ④ $\frac{4}{x}Mg$
- 問2 問1において、点Aで板ABCにはたらく抗力の大きさはいくらか。正しい ものを、次の① \sim ④のうちから一つ選べ。 $\boxed{2}$ [N]

- ① $\frac{6-x}{r}Mg$ ② $\frac{5-x}{r}Mg$ ③ $\frac{4-x}{r}Mg$ ④ $\frac{3-x}{r}Mg$
- **問3** 図2のように、点Dに紙面内で水平左向きの大きさ F_2 [N]の力を加えると、 板 ABC は辺 AB を水平方向に保ったまま静止した。このとき F_2 はいくらか。 正しいものを、次の①~④のうちから一つ選べ。 $F_2 = \boxed{3}$ [N]
 - $\bigcirc \frac{16}{3(4-r)}Mg$

(2) $\frac{16}{3(5-x)} Mg$

 $3 \frac{16}{3(6-x)} Mg$

- $\frac{16}{3(7-x)}Mg$
- 問4 問3において、点Aで板ABCにはたらく抗力の鉛直成分の大きさはいくら か。正しいものを、次の①~④のうちから一つ選べ。 4 [N]
 - ① $\frac{1}{4}Mg$ ② $\frac{1}{2}Mg$ ③ Mg ④ 2Mg

- 問5 問3において、点Aで板ABCにはたらく抗力の大きさT[N]はいくらか。 正しいものを、次の①~④のうちから一つ選べ。 $T = \begin{bmatrix} 5 \end{bmatrix}$ [N]
 - ① $Mg\sqrt{\frac{256}{9(5-x)^2}+1}$
- (2) $Mg\sqrt{\frac{256}{9(4-x)^2}+1}$
- 3 $Mg\sqrt{\frac{9(5-x)^2}{256}+1}$
- 4 $Mg\sqrt{\frac{9(4-x)^2}{256}+1}$
- **問6** x[m] の値を、 $1[m] \le x \le 3[m]$ の範囲で変化させたとき、**問5**の T[N]の値の最小値はいくらか。正しいものを、次の①~④のうちから一つ選べ。 6 (N)
 - ① $Mg\sqrt{\frac{265}{256}}$ ② $Mg\sqrt{\frac{73}{64}}$ ③ $Mg\sqrt{\frac{25}{9}}$ ④ $Mg\sqrt{\frac{337}{81}}$

第2間 次の文章を読み、各問い(問1~6)に答えよ。

[**解答番号 1** ~ **6**] (配点 30)

地球とくらべて月の方が重力が小さいことはよく知られている。正確には,地表での重力加速度の大きさを g とすると,月面でのそれは $\frac{1}{6}$ g である。地球上で月面に立った感じを味わうために,図1のような施設を考えた。箱 A とおもり B がロープで結ばれていて,ロープはなめらかに回転できる定滑車 C にかけられている。なお,ロープや滑車の質量は無視できるものとし,空気抵抗も無視できるものとする。箱 A には人が乗っており,箱と人を合わせた質量を M_1 ,おもり B の質量を M_2 (M_2 < M_1) とする。はじめ,おもり B を固定し,箱 A は上方に静止しており,人は質量 m の小球 D を,箱 A の床から高さ h の位置にささえている。時刻 t=0 に,おもり B の固定を静かに放すと同時に,人は小球 D を静かに放した。その後,小球 D は,時刻 t_1 に箱 A の床に達した。

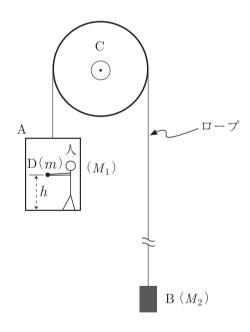


図 1

- 問1 おもり B を固定し全体が静止しているとき、ロープの張力の大きさはいくら か。正しいものを、次の①~④のうちから一つ選べ。 1

 - (1) $(M_1 M_2)g$ (2) $(M_1 + m M_2)g$ (3) M_1g (4) $(M_1 + m)g$
- **問2** 時刻 $t(0 < t < t_1)$ における、箱 A の鉛直下向きの加速度はいくらか。正し いものを,次の①~④のうちから一つ選べ。 2
 - $\underbrace{M_1 M_2}_{M_1 + M_2} g$

 $2 \frac{M_1 + m - M_2}{M_1 + m + M_2} g$

 $\frac{M_1 + M_2}{M_1 - M_2} g$

- $\underbrace{M_1 + m + M_2}_{M_1 + m M_2} g$
- 問3 問2の時刻において、ロープの張力の大きさはいくらか。正しいものを、次の ①~④のうちから一つ選べ。
 - ① $\frac{2(M_1+m)M_2}{M_1+m+M_2}g$
- $2 \frac{2M_1M_2}{M_1+M_2}g$

(3) $(M_1 + m) q$

- (4) M_1q
- 問4 問2の時刻において、箱A内の人から見た小球Dの鉛直下向きの加速度はい くらか。正しいものを、次の①~④のうちから一つ選べ。 4
 - ① $\frac{2M_2}{M_1 + M_2}g$

 $2 \frac{2M_2}{M_1 + m + M_2} g$

 $3 \frac{2M_1}{M_1 + M_2} g$

 $\frac{2(M_1+m)}{M_1+m+M_2}g$

- 問 5 問 4 の箱 A の中での小球 D の落下運動が、月面上での小球 D の落下運動と同じに見えるための、 M_1 と M_2 の関係はどうなるか。正しいものを、次の①~④のうちから一つ選べ。 $\boxed{5}$
 - ① $M_1 = 15M_2$ ② $M_1 = 13M_2$ ③ $M_1 = 11M_2$ ④ $M_1 = 9M_2$
- **問6** 小球 D を地球上で高さ h から静かに落としたときの地上に達するまでの時間を t_2 とする。**問5** の関係を満たすとき, $\frac{t_1}{t_2}$ はいくらか。正しいものを,次の① \sim ④のうちから一つ選べ。 $\frac{t_1}{t_2}$ = **6**
 - ① $\frac{1}{6}$ ② $\frac{1}{\sqrt{6}}$ ③ 6 ④ $\sqrt{6}$

第3間 次の文章を読み、各問い(問1~5)に答えよ。

〔解答番号 1 ∼ **5** 〕 (配点 20)

図1のように、空気(絶対屈折率は1)中に、絶対屈折率 n_1 の直角プリズムがあり、 その頂点を A, B, C とする。面 AB に入射角 i_1 で入射した光が,屈折角 r_1 でプリ ズム内に屈折し、面ACに入射角 r_2 で入射し、射出角 i_2 で射出した。

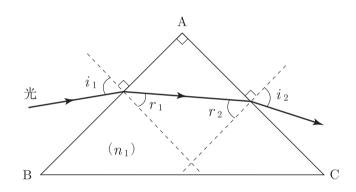


図 1

問1 $r_1 + r_2$ はいくらか。正しいものを、次の①~④のうちから一つ選べ。 $r_1 + r_2 = \boxed{1}$

- (1) 30°
- (2) 45° (3) 60°
- (**4**) 90°

問2 i_1 と i_2 の関係はどうなるか。正しいものを、次の①~④のうちから一つ選べ。 $\sin i_2 =$ 2
$ \textcircled{1} \sqrt{n_1^2 - \sin^2 i_1} \textcircled{2} \sqrt{n_1^2 + \sin^2 i_1} \textcircled{3} \sqrt{n_1^2 - \cos^2 i_1} \textcircled{4} \sqrt{n_1^2 + \cos^2 i_1} $
問3 $n_1 = \sqrt{3}$, $i_1 = 60^\circ$ のとき、 r_2 はいくらか。正しいものを、次の①~④のう

- ちから一つ選べ。 $r_2=$ 3
 - ① 30° ② 45° ③ 60° ④ 90°
- **問4 問3**において、プリズム内から面 AC へ入射する場合の臨界角 r_3 はいくらか。 正しいものを、次の①~④のうちから一つ選べ。 $\sin r_3 = \boxed{4}$
 - ① $\frac{\sqrt{3}}{2}$ ② $\frac{\sqrt{3}}{3}$ ③ $\frac{\sqrt{3}}{4}$ ④ $\frac{\sqrt{3}}{5}$
- **問5** 同じく $n_1 = \sqrt{3}$ とし、プリズムの周囲を絶対屈折率 n_2 の透明な液体で満たした。次に入射角 i_1 を 0 ° からだんだん大きくしていったところ、 i_1 が 45 ° を越えたとき、はじめて光が面 AC からプリズムの外に射出された。 n_2 はいくらか。正しいものを、次の①~④のうちから一つ選べ。 $n_2 = \boxed{5}$
 - ① $\sqrt{5}$ ② 2 ③ $\sqrt{3}$ ④ $\sqrt{2}$

第4間 次の文章を読み、各間い(問1~4)に答えよ。

[**解答番号 1** ~ **4**] (配点 20)

図 1 のように、 $R[\Omega]$ の電気抵抗 2 個 2 $R[\Omega]$ の電気抵抗と起電力 E[V] と 2E [V] の直流電源とを接続した。それぞれの電気抵抗を矢印の向きに流れる電流を、図 1 のように $I_1[A]$ 、 $I_2[A]$ 、 $I_3[A]$ とする。 3 個の電気抵抗以外の回路の抵抗は、すべて無視できるものとする。

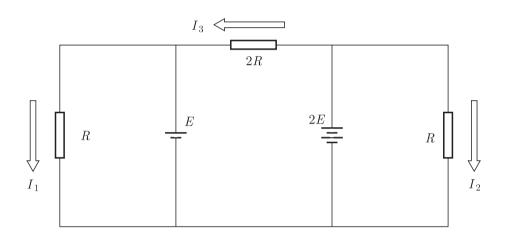


図 1

- **問1** I_1 はいくらか。正しいものを、次の①~④のうちから一つ選べ。 $I_1 = \boxed{1}$ (A)

- ① $\frac{E}{2R}$ ② $\frac{E}{R}$ ③ $\frac{3E}{2R}$ ④ $\frac{2E}{R}$
- **問2** I_2 はいくらか。正しいものを、次の①~④のうちから一つ選べ。 $I_2 = \boxed{2}$ (A)
 - ① $\frac{E}{2R}$ ② $\frac{E}{R}$ ③ $\frac{3E}{2R}$ ④ $\frac{2E}{R}$

- 問3 I_3 はいくらか。正しいものを、次の①~④のうちから一つ選べ。 $I_3 = \boxed{3}$ (A)
- ① $\frac{E}{2R}$ ② $\frac{E}{R}$ ③ $\frac{3E}{2R}$ ④ $\frac{2E}{R}$
- **問4** 起電力 E[V] の直流電源が供給する電力はいくらか。正しいものを、次の① ~**④**のうちから一つ選べ。**4** [W]

- ① $\frac{2E^2}{R}$ ② $\frac{3E^2}{2R}$ ③ $\frac{E^2}{R}$ ④ $\frac{E^2}{R}$