2011年度

6 数 学

(100点 60分)

〈注 意 事 項〉

- 1 試験開始の合図があるまで、この問題冊子の中を見てはいけません。
- 2 問題は2ページから9ページまでです。全問解答しなさい。
- 3 試験中に問題冊子の印刷不鮮明,ページの落丁・乱丁及び解答用紙の汚れ等に気 付いた場合は、手を挙げて監督者に知らせなさい。
- 4 解答用紙には解答欄以外に次の記入欄があるので、監督者の指示に従って、それ ぞれ正しく記入し、マークしなさい。
 - 氏名欄
 氏名・フリガナを記入しなさい。
 - ② 受験番号欄
 受験番号(数字)を記入し、さらにその下のマーク欄にマークしなさい。
- 5 正しくマークされていない場合は、採点できないことがあります。
- 6 問題冊子の余白等は適宜利用してよいが、どのページも切り離してはいけません。
- 7 試験終了後、問題冊子は持ち帰りなさい。

〈解答上の注意〉 ————

解答上の注意は、裏表紙に記載してあるので、この問題冊子を裏返して必ず読みな さい。ただし、問題冊子を開いてはいけません。

数 学

(全 問 必 答)

第1問 (配点 30)

(1)
$$x = \frac{2}{\sqrt{5} - \sqrt{3}}, y = \frac{2}{\sqrt{5} + \sqrt{3}}$$
 $O \ge 3$

$$x + y =$$
 ア $\sqrt{$ 1 $}$, $xy =$ ウ

であり

$$\frac{x+1}{y} + \frac{y+1}{x} = \boxed{\qquad} + \sqrt{\boxed{\qquad}}$$

である。

(2) $xyz \neq 0$ とする。連立方程式 x + y = 5xy, y + z = 6yz, z + x = 7zx の解は

である。

(3) 2次方程式 $x^2 - (a-1)x + (a-3)^2 = 0$ · · · · · ① が異なる 2 つの実数解を もつ a の値の範囲は

である。また、①が異なる 2 つの整数の解をもつのは $a = \boxed{ y }$ のときである。

(4) 関数 $y = 2^{2x+1} - 2^{x+3} + 2^4$ は

x = **タ** のとき最小値 **チ**

をとる。また、 $0 \le x \le 2$ における y の最大値は **ツテ** である。

第2問 (配点 30)

- (1) xy 平面上で、動点 P は最初に原点にある。1 個のさいころを投げて、1、2 のいずれかの目が出たら P を x 軸の方向に 1 だけ動かし、3、4、5 のいずれかの目が出たら P を y 軸の方向に 1 だけ動かす。また、6 の目が出たら P を動かさない。このような試行を 4 回行なったとき
 - (i) $P \dot{m} x$ 軸上にある確率は $\frac{P}{1 + 1}$ である。
 - (ii) Pが点(2, 2)の位置にある確率は エ である。
 - (iii) Pが点(1, 1)の位置にある確率は カ である。
- (2) ベクトル \overrightarrow{a} , \overrightarrow{b} が $|\overrightarrow{a}| = 2$, $|\overrightarrow{b}| = 3$, $|3\overrightarrow{a} 2\overrightarrow{b}| = 4$ を満たすとき

 - (ii) $\vec{a} = \overrightarrow{OA}$, $\vec{b} = \overrightarrow{OB}$ とおくと、 $\triangle OAB$ の面積は

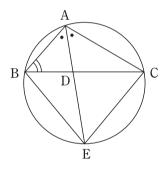
$$\triangle OAB = \begin{array}{|c|c|c|}\hline \flat & \sqrt{} \\ \hline \hline \hline \hline \hline \hline \end{array}$$

- (3) 等差数列 $\{a_n\}$ において、 $a_2=35$ 、 $a_{11}=-1$ とする。また、数列 $\{a_n\}$ の初項から第n 項までの和を S_n とおく。
 - (i) 数列 $\{a_n\}$ の初項は ソタ 、公差は チツ である。
 - (ii) S_n が最大となる n は n = **テト** である。
 - (iii) S_n が負となる最小の n は $n = \boxed{$ ナニ である。

第3問 (配点 20)

三角形 ABC において

$$AB = 4$$
, $BC = 9$, $CA = 8$


とする。また、 \angle BAC の二等分線が辺 BC と交わる点を D、さらに AD の延長が外接 円と交わる点を E (E \succcurlyeq A) とする。

(1) 線分BD, DCの長さは

である。また,

であるから、線分ADの長さは

$$AD = \sqrt{ + 7}$$

(2) 線分 EA, EB, EC の長さの比を, 最も簡単な自然数で表すと

である。

(3) 三角形 DAB と三角形 DCE の面積の和を S_1 , 三角形 DAC と三角形 DBE の面積 の和を S_2 とする。 S_1 と S_2 の比を,最も簡単な自然数で表すと

$$S_1:S_2=$$
 \triangleright λ : \forall

第4問 (配点 20)

3次関数 $f(x) = x^3 - 3x^2 - 6x$ を考える。

(1) f(x) の導関数 f'(x) は

である。

(2) 曲線 y = f(x) の点 (t, f(t)) における接線の方程式は

$$y = f'(t)x - \boxed{ } t^3 + \boxed{ } t^2$$

である。この接線が原点(0, 0)を通るとき

$$t = \begin{array}{|c|c|c|}\hline & & & & \\ \hline \end{array}$$

であるから、接線の方程式は

$$y = x, y = x$$

(3) f(x) と f'(x) に対して、関係式

$$f(x)=rac{1}{3}f'(x)igg(x-igg|$$
ス $igg)-igg($ セ $x-igg|$ ソ が成り立ち、 $f(x)$ は $x=igg|$ タ $-\sqrt{igg|}$ において 極大値 $igg|$ ツ $\sqrt{igg|}$ $-igg|$ ト

をとることがわかる。

〈解答上の注意〉

1 問題の文中の P , I などには、特に指示がないかぎり、符号(-, \pm)、数字($0 \sim 9$)が入ります。P, I , D , …の一つ一つは、これらのいずれか一つに対応します。それらを解答用紙のI , I , I , …で示された解答欄にマークして答えなさい。

例1 アイウ に-83 と答えたいとき

ア	
1	$\ominus \oplus @ @ 1 2 3 4 5 6 7 8 9$
ウ	$\ominus \oplus 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9$

2 分数形で解答する場合は、既約分数(それ以上約分できない分数)で答えなさい。 符号は分子につけ、分母につけてはいけません。

+	⊕ ⊕ 0 1 2 3 4 5 6 7 8 9
ク	$\ominus \oplus @ @ @ 2 @ 4 $ 6 7 8 9$
ケ	$\ominus \oplus @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ $

3 根号を含む形で解答する場合は、根号の中に現れる自然数が最小となる形で答えなさい。

例えば、 コ
$$\sqrt{\frac{ }{ }}$$
 , $\frac{\sqrt{\sqrt{2}\lambda}}{\sqrt{2}}$ に $4\sqrt{2}$, $\frac{\sqrt{13}}{2}$ と答えるところを, $2\sqrt{8}$, $\frac{\sqrt{52}}{4}$ のように答えてはいけません。